Abstract

This study addresses the challenge of optimizing powdered water kefir's fermentation and preservation processes to enhance its physical-chemical, microbiological, and technological characteristics. The main objective was to determine the best fermentation conditions and evaluate the efficacy of different drying methods. The optimal fermentation conditions were 5 % kefir grains, 10 % brown sugar, and an incubation temperature of 25 °C. Remarkably, the microbiological analysis revealed high abundances of Zymomonas mobilis (grains: 94.31 % and beverage: 91.68 %), Sporolactobacillus spathodeae (grains: 3.00 % and beverage: 5.42 %), and Liquorilactobacillus satsumensis (grains: 1.47 % and beverage: 0.62 %) among bacteria, and Lachancea fermentati (grains: 95.54 % and beverage: 67.53 %), Wickerhamomyces anomalus (grains: 3.00 % and beverage: 26.77 %) among fungi. The study innovatively demonstrates that lyophilization preserves the viability of these microorganisms, making it a promising method for producing stable, probiotic-rich powdered kefir. Although spray drying resulted in a logarithmic reduction of 3 logs CFU/g, it maintained sufficient microorganism counts, proving its viability as an alternative drying method. These methods retain the ideal physical-chemical properties and expand the accessibility and practical applications of water kefir. This research underscores the potential for powdered water kefir to deliver health benefits conveniently and versatilely, paving the way for broader industrial and academic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.