Abstract

The properties of Extra Low Interstitials (ELI) Ti6Al4V components fabricated via the laser-based powder bed fusion (L-PBF) process are prone to variation, particularly throughout a powder reuse regime. Interstitial pick-up of interstitial elements within the build chamber during processing can occur, most notably, oxygen, nitrogen, and hydrogen, which can impair the mechanical properties of the built component. This study analyses ELI Ti6Al4V components manufactured by the L-PBF process when subjected to a nine-stage powder reuse sequence. Mechanical properties are reported via hardness measurement and tensile testing. Results showed that from 0.099 wt.% to 0.126 wt.% oxygen content, the mean hardness and tensile strength increased from 367.8 HV to 381.9 HV and from 947.6 Mpa to 1030.7 Mpa, respectively, whereas the ductility (area reduction) reduced from around 10% to 3%. Statistical analysis based on the empirical model from Tabor was performed to determine the strength–hardness relationship. Results revealed a significant direct relationship between tensile strength and Vickers hardness with a proportionality constant of 2.61 (R-square of 0.996 and p-value of 6.57 × 10−6).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.