Abstract

Aluminum nitride (AlN) is a promising material for heat sinks and microelectronic applications because of the advantages of high theoretical thermal conductivity, high mechanical strength, good electrical insulation, low dielectric constant and low thermal expansion coefficient. However, the difficulties in shaping complex-shaped parts with a high thermal conductivity have retarded the wide applications of AlN ceramic. Herein, we design a new binder system containing resin components and adopt the powder injection molding technology to fabricate complex-shaped AlN parts. After the debinding process, the special binder system would produce residual carbon, which could react with Al2O3 and result in decreasing oxygen impurity and forming the yttrium-rich aluminates. The yttrium-rich aluminates can accelerate the densification of AlN ceramic and fasten the oxygen on the triangular grain boundary, leaving the clean grain boundary beneficial for high thermal conductivity. The as-prepared AlN parts with complex shape possess a high thermal conductivity of 248 W m−1 K−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call