Abstract

For the high performance of a fuel cell where a bipolar plate (BP) is applied, rectangular channel, microchannel width, micro-rib, enough channel quantity, adequate channel depth, and innovative flow field design should be realized from a configuration standpoint. In this study, a stainless-steel BP with a microchannel flow field is fabricated with a powder bed fusion (PBF) 3D printer to improve fuel cell performance. A BP with a triple serpentine flow field, rectangular channel, 300 μm channel width, 300 μm rib, and 500 μm channel depth is designed. The print is completed perfectly until the flow field. The bending phenomenon due to thermal deformation does not occur in the BP fabricated by designing the thickness at 2 mm. Performance tests are conducted using fabricated stainless-steel BPs. The current density value is 1.2052 A/cm2 at 0.6 V. This value is higher by 52.8% than the BP with 940 μm channels (rectangle, 940 μm ribs, and 500 μm channel depth). In addition, the value is higher by 24.9% than a graphite BP with 940 μm channels (rectangle, 940 μm ribs, and 1000 μm channel depth). The current density values are measured at 0.6 V for 260 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.