Abstract

The rapid and low-cost preparation of powder activated coke (PAC) is very important for the promotion of fluidized dry desulfurization technology of activated coke. In order to explore the effect of rapid pyrolysis process on SO2 adsorption capacity of PAC, the fractal analysis of PAC prepared under different atmospheres was carried out. The Frenkel-Halsey-Hill (FHH) method was used to determine two fractal dimensions D1 and D2, under relative pressures of 0-0.5 and 0.5-1, respectively. The results indicate that the fractal dimensions were influenced by the concentrations of activation agents with D1 ranging from 2.1838 to 2.8643 and D2 ranging from 2.7485 to 2.9257. The effect of steam on the fractal dimension of PAC sample is small, but oxygen has a great promotion effect on the fractal dimension. An n-shaped curve-based relationship between fractal dimensions and coke yields is observed with a peak values of fractal dimensions appearing around 64% yield. The SO2 adsorption capacity shows a consecutively positive linear correlation with D2, while it illustrates distinctly different linear rates with D1 in intervals of 2-2.6 and 2.6-3, respectively. Taking advantage of fractal analysis as research method, this paper clarified the influence of activation atmosphere and ablative degree on the SO2 adsorption capacity of PAC, and the research conclusion provided a basis for the PAC preparation with high SO2 capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.