Abstract

We develop some ideas discussed by E. Schucking [arXiv:0803.4128] concerning the geometry of the gravitational field. First, we address the concept according to which the gravitational acceleration is a manifestation of the space-time torsion, not of the curvature tensor. It is possible to show that there are situations in which the geodesic acceleration of a particle may acquire arbitrary values, whereas the curvature tensor approaches zero. We conclude that the space-time curvature does not affect the geodesic acceleration. Then we consider the Pound-Rebka experiment, which relates the time interval {delta}{tau}{sub 1} of two light signals emitted at a position r{sub 1}, to the time interval {delta}{tau}{sub 2} of the signals received at a position r{sub 2}, in a Schwarzschild type gravitational field. The experiment is determined by four space-time events. The infinitesimal vectors formed by these events do not form a parallelogram in the (t,r) plane. The failure in the closure of the parallelogram implies that the space-time has torsion. We find the explicit form of the torsion tensor that explains the nonclosure of the parallelogram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.