Abstract

Pouch-type hybrid Li-air batteries with an air-breathing ability and lightweight packaging provide improved specific energy compared with commercial Li-ion batteries and Li–O2 batteries that require oxygen supply equipment. Because ceramic Li-ion conductors, used to separate aprotic and aqueous electrolytes, are brittle and inflexible, hybrid Li-air batteries are difficult to assemble into pouch cells for use in flexible device applications. A flexible pouch-type hybrid Li-air battery is realized by utilizing a flexible composite lithium-ion conducting membrane (FCLICM). This FCLICM, consisting of sol-gel-derived Li1+xAlxTi2-x(PO4)3 (LATP) as a Li-ion conductor and a chemically compatible poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer matrix, is produced by the tape-casting technique and applied in hybrid Li-air batteries. An assembled pouch-type hybrid Li-air battery containing a lithium foil anode, an aprotic electrolyte, an FCLICM, an aqueous electrolyte and a platinum air cathode is operated in ambient air, exhibiting a high capacity of 200 mAh g−1 with a cycle life of 12 cycles (48 h). This pouch cell shows an open-circuit voltage of 3.16 V regardless of being flat or bent, demonstrating its flexibility and electrochemical stability and its potential for use in wearable technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.