Abstract
We study structural properties of the q-color Potts field theory which, for real values of q, describes the scaling limit of the random cluster model. We show that the number of independent n-point Potts spin correlators coincides with that of independent n-point cluster connectivities and is given by generalized Bell numbers. Only a subset of these spin correlators enters the determination of the Potts magnetic properties for q integer. The structure of the operator product expansion of the spin fields for generic q is also identified. For the two-dimensional case, we analyze the duality relation between spin and kink field correlators, both for the bulk and boundary cases, obtaining in particular a sum rule for the kink–kink elastic scattering amplitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.