Abstract

Lattice reduction algorithms have numerous applications in number theory, algebra, as well as in cryptanalysis. The most famous algorithm for lattice reduction is the LLL algorithm. In polynomial time it computes a reduced basis with provable output quality. One early improvement of the LLL algorithm was LLL with deep insertions (DeepLLL). The output of this version of LLL has higher quality in practice but the running time seems to explode. Weaker variants of DeepLLL, where the insertions are restricted to blocks, behave nicely in practice concerning the running time. However no proof of polynomial running time is known. In this paper PotLLL, a new variant of DeepLLL with provably polynomial running time, is presented. We compare the practical behavior of the new algorithm to classical LLL, BKZ as well as blockwise variants of DeepLLL regarding both the output quality and running time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.