Abstract

The surface of a platinum electrode has been modified with platinum nanoparticles (PtNPs) and the enzyme sulfite oxidase (SOx), was entrapped on its surface in an ultrathin polypyrrole (PPy) film. The PtNPs, with a diameter of 30–40 nm, were deposited on the Pt electrode by cycling the electrode potential 20 times from -200 to 200 mV at a sweep rate of 50 mV.s-1. Morphological evidence of the successful incorporation of SOx and the presence of PtNPs were obtained by scanning electron microscopy. Also, the electrochemical behavior of the PtNPs/PPy-SOx film was examined by cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy and potentiometry. Under optimized conditions, the biosensor achieved a sensitivity of 57.5 mV.decade-1, a linear response that extends from 0.75 to 65 μM of sulfite, a detection limit of 12.4 nM, and a response time of 3–5 s. The biosensor was successfully applied to the determination of sulfite in wine and beer samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call