Abstract

Molecularly imprinted polymer (MIP)-based polymeric membrane potentiometric sensors are ideal candidates for detection of organic species. The development of such sensors has opened new attractive horizons for potentiometric sensing. However, it should be noted that in the preparation of these MIP receptors, the selection of the functional monomer usually depends on empirical trial- and error-based optimization, which involves tedious and time-consuming experiments. In this work, the computer-aided design and synthesis of an MIP receptor are applied in the fabrication of an MIP-based potentiometric sensor. The density functional theory calculation with the B3LYP model and 6-31G(d) basis set is used to study the interactions between the functional monomer and template molecules. The binding energies of the complexations between the template molecule and different functional monomers are used as a criterion for the selection of the proper monomer. The designed MIP is then synthesized and employed as the receptor for the fabrication of the potentiometric sensor. As a proof-of-concept experiment, the antibiotic sulfadiazine has been selected as a model and 4 functional monomers, 2-hydroxyethyl methacrylate, methyl methacrylate, N-isopropylacrylamide and N-phenylacrylamide, have been chosen. The designed MIP-based sensor exhibits excellent sensitivity with a linear range of 1–10 μM and also shows a good selectivity. We believe that the proposed computer-aided synthesis technique for the MIP receptor selection can provide a general and facile way to replace the traditional empirical MIP preparation method in the fabrication of MIP-based electrochemical and optical sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call