Abstract

The present work demonstrates the correlation between structure, properties, and self-sensing protocols of in situ prepared ferric oxide doped grafted copolymer composite, comprised of ferric oxide, chitosan, and polypyrrole (α-Fe2O3-en-CHIT-g-PPy) for residual ibuprofen present in natural and artificial samples. The chemical structure, morphology, functionality, and physio-mechanical properties of the composite were determined by Fourier transform infrared spectrometer (FT-IR), Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Two probe method, and standard ASTM techniques to explore sensing nature. The results confirm the evolution of axially aligned structure against 110 planes of α-Fe2O3 and chemically functionalized expanded polymer matrix during in-situ chemical polymerization of pyrrole, with better porosity, interactivity, and improved electrical conductivity i.e. 7.32 × 10−3 S cm−1. Further, a thin film of prepared composite coated on an ITO glass plate was explored for potentiometric sensing of ibuprofen (IBU) present in artificial and natural samples without the use of any additional energy sources. The observed sensing parameters are the sensing ranging 0.5 μM to 100.0 μM, sensitivity 2.5081 mV μM−1 cm−2, response time 50 s, recovery time 10 s, and stability for 60 days. The sensing mechanism of the IBU sensor and effective charge transfer in the electrode was also discussed based on changes in IR spectra of the electrode recorded before and after sensing due to surface oxidation of IBU due to the presence of iron and doping effect of iron oxide in the composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.