Abstract

The stability and reproducibility of an Ag/AgCl sensors’ response in an alkaline medium are important for the application of these sensors in cementitious materials. The sensors’ response, or their open circuit potential (OCP), reflects a dynamic equilibrium at the sensor/environment interface. The OCP response in an alkaline medium is affected by the presence of hydroxide ions. The interference of hydroxide ions leads to inaccuracies or a delay in the sensors’ response to a certain chloride content. In this article, the potentiometric response (or OCP evolution) of the chloride sensors is measured in model solutions, resembling the concrete pore water. The scatter of the sensors’ OCP is discussed with respect to the interference of hydroxide ions at varying chloride concentration in the medium. The deviation of the sensor’s response from its ideal performance (determined by the Nernst law) is attributed to dechlorination of the AgCl layer and the formation of Ag2O on the sensor’s surface. Results from the surface XPS analysis of the AgCl layer before and after treatment in alkaline medium confirm these observations in view of chemical transformation of AgCl to Ag2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.