Abstract

A highly sensitive immunosensor based on immobilization of hepatitis B surface antibody (HBsAb) on platinum electrode (Pt) modified silver colloids and polyvinyl butyral (PVB) as matrixes has been developed for potentiometric immunoanalysis to detect hepatitis B surface antigen (HBsAg) in this study. HBsAb molecules were immobilized successfully on nanometer-sized silver colloid particles associated with polyvinyl butyral on a platinum electrode surface. The modification procedure was electrochemically monitored by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The HBsAb-silver-PVB-modified electrode exhibited direct electrochemical behavior toward HBsAg. The factors influencing the performance of the resulting immunosensor were studied in detail. More than 94.7% of the results of human serum samples obtained by this method were in agreement with those obtained by enzyme-linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited a sigmoid curve with log HBsAg concentration, high sensitivity (39.8 mV/decade), wide linear range from 16.0 to 800 ng mL−1 with a detection limit of 3.6 ng mL−1, fast potentiometric response ( 4 months). The response mechanism of the immunosensors was also studied with AC impedance techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.