Abstract
Sprinkle formulations represent an interesting genre of medicinal products. A frequent problem, however, is the need to mask the unpleasant taste of these drug substances. In the present work, we propose the use of a novel sensor array based on solid-state ion-selective electrodes to evaluate the taste-masking efficiency of rosuvastatin (ROS) sprinkle formulations. Eight Multiple Unit Pellet Systems (MUPSs) were analyzed at two different doses (API_50) and (API_10), as well as pure Active Pharmaceutical Ingredient (API) as a bitter standard. Calcium phosphate-based starter pellets were coated with the mixture containing rosuvastatin. Some of them were additionally coated with hydroxypropyl methylcellulose, which was intended to separate the bitter substance and prevent it from coming into contact with the taste buds. The sensor array consisted of 16 prepared sensors with a polymer membrane that had a different selectivity towards rosuvastatin calcium. The main analytical parameters (sensitivity, selectivity, response time, pH dependence of potential, drift of potential, lifetime) of the constructed ion-selective electrodes sensitive for rosuvastatin were determined. The signals from the sensors array recorded during the experiments were processed using Principal Component Analysis (PCA). The results obtained, i.e., the chemical images of the pharmaceutical samples, indicated that the electronic tongue composed of the developed solid-state electrodes provided respective attributes as sensor signals, enabling both of various kinds of ROS pellets to be distinguished and their similarity to ROS bitterness standards to be tested.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.