Abstract

We report the first direct cyclic voltammetric determination of the valence and conduction band energy levels for noncovalently modified (6,5) chirality enriched SWNTs [(6,5) SWNTs] in which an aryleneethynylene polymer monolayer helically wraps the nanotube surface at periodic and constant morphology. Potentiometric properties as well as the steady-state and transient absorption spectroscopic signatures of oxidized (6,5) SWNTs were probed as a function of the electronic structure of the aryleneethynylene polymer that helically wraps the nanotube surface, the solvent dielectric, and nanotube hole polaron concentration. These data: (i) highlight the utility of these polymer-SWNT superstructures in experiments that establish the potentiometric valence and conduction band energy levels of semiconducting carbon nanotubes; (ii) provide a direct measure of the (6,5) SWNT hole polaron delocalization length (2.75 nm); (iii) determine steady-state and transient electronic absorptive spectroscopic signatures that are uniquely associated with the (6,5) SWNT hole polaron state; and (iv) demonstrate that modulation of semiconducting polymer frontier orbital energy levels can drive spectral shifts of SWNT hole polaron transitions as well as regulate SWNT valence and conduction band energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.