Abstract

A potentiometric sensor is reported for the mercury(II) detection, which uses substituted thiourea-functionalized nanoporous silica (FTU-LUS-1) as the sensitive material. Substituted thiourea (FTU) and FTU-LUS-1 were first prepared and then characterized by 1H NMR, 19F NMR, 13C NMR, FTIR, XRD, TG and CNS elemental analysis. The electrodes with FTU-LUS-1 proportion of 10.0 wt% demonstrated very stable potentials. The prepared electrodes exhibit a Nernstian slope of 28.4 +/- 1.0 mV decade(-1) for mercury(II) ion over a wide concentration range of 1.0 x 10(-7) to 1.0 x 10(-1) mol dm(-3). The electrode exhibited a detection limit of 7.0 x 10(-8) mol dm(-3). Moreover, the selectivity coefficient, response time, performance, sensitivity and stability of the modified electrode were investigated. The electrode presented a response time of about 35 s, a high performance and sensitivity in a wide range of cation activities as well as good long term stability (more than 9 months). The method was satisfactory and could also be used to monitor the mercury(II) ion concentration in waste water and fish samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call