Abstract

The stoichiometry and stability constants of the complexes formed between [Pd(MAMP)(H2O)2]2+ and various biologically relevant ligands containing different functional groups were investigated. The ligands used are amino acids, peptides and DNA constituents. The results show the formation of 1:1 complexes with amino acids and peptides and the corresponding deprotonated amide species. Structural effects of peptides on amide deprotonation were investigated. The purine and pyrimidine bases uracil, uridine, cytosine, inosine, inosine 5′-monophosphate (5′-IMP) and thymine form 1:1 and 1:2 complexes. The concentration distribution of the various complex species was calculated as a function of pH. The effect of chloride ion concentration on the formation constant of CBDCA with Pd(MAMP)2+ was also reported. The results show ring opening of CBDCA and monodentate complexation of the DNA constituent with the formation of [Pd(MAMP)(CBDCA-O)DNA], where (CBDCA-O) represents cyclobutane dicarboxylate coordinated by one carboxylate oxygen. The equilibrium constant of the displacement reaction of coordinated inosine, as a typical DNA constituent, by SMC and/or methionine was calculated. The results are expected to contribute to the chemistry of antitumor agents. The calculated parameters of the optimized complexes support the measured formation constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.