Abstract

Our original aims were to elucidate the mechanisms through which the immunosuppressive insect virus, the Campoletis sonorensis polydnavirus (CsV) promotes replication of a well-characterized pathogenic virus, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in hosts that are mildly or non-permissive to virus replication. According to the BARD panels criticism we modified our short-term goals (see below). Thus, in this feasibility study (one-year funding) we aimed to show that: 1. S. littoralis larvae mount an immune response against a baculovirus infection. 2. Immunosuppression of an insect pest improves the ability of a viral pathogen (a baculovirus) to infect the pest. 3. S. littoralis cells constitute an efficient tool to study some aspects of the anti- viral immune response. We achieved the above objectives by: 1. Finding melanized viral foci upon following the baculoviral infection in S . littoralis larvae infected with a polyhedra - positive AcMNPV recombinant that expressed the GFP gene under the control of the Drosophila heat shock promoter. 2. Studying the effect of AcMNPV-infection in S . littoralis immunosuppressed by parasitation with the Braconidae wasp Chelonus inanitus that bears the CiV polydna virus, that resulted in higher susceptibility of S. littoralis to AcMNPV- infection. 3. Proving that S. littoralis hemocytes resist AcMNPV -infection. 4. Defining SL2 as a granulocyte-like cell line and demonstrating that as littoralis hemocytic cell line undergoes apoptosis upon AcMNPV -infection. 5. Showing that some of the recombinant AcMNPV expressing the immuno-suppressive polydna virus CsV- vankyrin genes inhibit baculoviral-induced lysis of SL2 cells. This information paves the way to elucidate the mechanisms through which the immuno- suppressive polydna insect viruses promote replication of pathogenic baculoviruses in lepidopteran hosts that are mildly or non-permissive to virus- replication by: - Assessing the extent to which and the mechanisms whereby the immunosuppressive viruses, CiV and CsV or their genes enhance AcMNPV replication in polydnavirus- immunosuppressed H. zea and S. littoralis insects and S. littoralis cells. - Identifying CiV and CsV genes involved in the above immunosuppression (e.g. inhibiting cellular encapsulation and disrupting humoral immunity). This study will provide insight to the molecular mechanisms of viral pathogenesis and improve our understanding of insect immunity. This knowledge is of fundamental importance to controlling insect vectored diseases of humans, animals and plants and essential to developing novel means for pest control (including baculoviruses) that strategically weaken insect defenses to improve pathogen (i.e. biocontrol agent) infection and virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call