Abstract

The effects of bradykinin on nicotine-induced responses were investigated in neurons dissociated from rat paratracheal ganglia using the nystatin-perforated patch-clamp recording technique. When bradykinin (10 − 9 to 10 − 8 M) was pretreated and then simultaneously applied with 10 − 5 M nicotine, bradykinin potentiated the nicotine-induced currents. The potentiation was mimicked by [Hyp 3]-bradykinin and inhibited by HOE-140, pertussis toxin, neomycin and U-73122, but not U-73433. These results suggest that bradykinin potentiates nicotinic currents via bradykinin B 2 receptor, pertussis toxin-sensitive G-protein and phospholipase C. Since bradykinin inhibits the M-current via bradykinin B 2 receptor and pertussis toxin-insensitive G-protein [Mochidome, T., Ishibashi, H., Takahama, K., 2001. Bradykinin activates airway parasympathetic ganglion neurons by inhibiting M-currents. Neuroscience 105, 785–791.], it seemed that bradykinin B 2 receptor activated two distinct signal transduction pathways in the paratracheal ganglia neurons. This effect of bradykinin might cause enhanced synaptic transmission in paratracheal ganglia neurons and contribute to the aggravation of pathological conditions of the lower airway via enhanced acetylcholine release from the postganglionic nerve terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.