Abstract
The responses of fed, fasted, and hyperthyroid (T4) Sprague-Dawley male rats to 50 mg 1,1-dichloroethylene (1,1-DCE)/kg were compared. Hyperthyroid rats received three sc injections of thyroxine (100 micrograms/100 g) at 48-hr intervals; all other rats were sham-injected. 1,1-DCE was given po in mineral oil 24 hr after the last T4 dose; controls received only mineral oil. Animals were killed at 2, 4, and 8 hr. Liver GSH contents were lowered about 55% by both fasting and T4 while GSH transferase activities were lowered about 20% by fasting and 35% by T4. Only T4 pretreatment lowered alcohol dehydrogenase activities. Liver injury (i.e., serum glutamate pyruvate transaminase, histology) after 1,1-DCE was minimal in fed rats, moderate in fasted rats, and intermediate in T4 rats. Fasted rats showed a more pronounced depletion of liver GSH after 1,1-DCE than T4 rats and only in fasted rats did the toxicant decrease activities of the detoxification enzymes. Hypoglycemia after 1,1-DCE occurred in fed rats, but more rapidly in T4 rats. In contrast, fasted rats unexpectedly became hyperglycemic after the toxicant. Patterns of body temperature change after the toxicant, which might be due to its metabolites, were dissimilar. Hypothermia was not observed in fed rats, was only transiently evident in T4 rats, but occurred rapidly within 1 hr in fasted rats and steadily became more severe. The dissimilar patterns of liver enzyme and body temperature and serum glucose change after the toxicant in the three groups are indicative of different pathways of injury potentiation by fasting and hyperthyroidism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.