Abstract

Narrow band gap zinc oxide (ZnO) nanoparticles (NPs) were synthesized using unboiled and boiled leaf extracts of Costus woodsonii. The as-synthesized NPs were characterized using a range of techniques. The as-synthesized ZnO NPs were crystalline with a hexagonal wurtzite structure similar to the commercial ZnO (ZnO-C). The maximum absorbance was observed at ~390 nm for ZnO-C and the as-synthesized ZnO NPs (ZnO-UL and ZnO-BL) showed a red shift, i.e. ~448 nm to ~462 nm, hence, a lower band gap of ~2.68–2.77 eV. The band gap energy of the as-synthesized ZnO NPs was lower than that of commercial ZnO. The surface of ZnO was coated/modified with the components of the leaf extract. The as-synthesized ZnO NPs showed similar particle sizes and were spherical in shape. These studies confirmed the green synthesis of ZnO NPs using Costus woodsonii and the significantly reduced band gap (Eg = ~2.68 eV to ~2.77 eV) of the as-synthesized ZnO NPs compared to the ZnO-C (Eg = 3.18 eV).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call