Abstract

Activated carbon is a promising material with high efficiency in dye removal from polluted wastewater. However, commercial activated carbon is expensive and generates black color in the medium. Therefore, searching for low-cost, eco-friendly activated carbon sources such as agricultural wastes and algal biomasses is essential. Hence, this study is directed to prepare the physical and the H3PO4 chemical activated carbon from the algae ”Sargassum dent folium” and the raw algae itself and apply it for Methyl Orange (M. orange) removal from contaminated wastewater and compare its performance with the commercial activated carbon. First, adsorbent materials are prepared and involved in the optimization process for M. orange removal using some preliminary experiments, followed by Response Surface Method-ology (RSM) and Artificial Neural Network (ANN). Finally, Isotherm and kinetics are studied to explain the adsorption mechanism. In contrast to other materials, results show that physical algae-activated carbon achieves the maximum removal efficiency of 96.687%. These results are obtained from ANN combined with Moth Search Algorithm (MSA), representing the most effective model for achieving the highest M. orange removal efficiency from Physical algae activated carbon. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 RE%, 88.5 indicated RSM RE%, and 85.9431 predicted ANN RE%. The best observed and predicted removal efficiencies for the H3PO4 chemical activated carbon are 89.6157 RE%, 82.38 predicted RSM RE%, and 89.5442 predicted ANN RE%. The best experimental and predicted removal efficiencies for the physical-activated carbon are 94.7935 RE%, 95.49 indicated RSM RE%, and 95.4298 predicted ANN RE%. The best observed and predicted removal efficiencies for the commercial-activated carbon are 92.2659 RE%, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 %RE, 88.5 predicted RSM RE %, and 85.9431 expected ANN RE%. For the H3PO4 chemical activated carbon, the best experimental and predicted removal efficiencies are 89.6157%RE, 82.38 indicated RSM RE%, and 89.5442 predicted ANN RE%. For the physical-activated carbon, the best observed and predicted removal efficiencies are 94.7935 %RE, 95.49 predicted RSM RE%, and 95.4298 indicated ANN RE%. For the commercial-activated carbon, the best experimental and predicted removal efficiencies are 92.2659 %RE, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It then compares the results to the effectiveness of commercial activated carbon. In the state of the raw algae, Temkin and Langmuir isotherm models best suit the data, while Temkin agrees well with the data from physical-activated carbon. Temkin and Freundlich's models are fitted with the H3PO4 chemical activated carbon. The model that fits the raw algae physically activated carbon and H3PO4 chemical-activated carbon the best is pseudo-second-order kinetics. Future research could examine the produced activated carbon-based algae's capacity to extract more contaminants from contaminated wastewater. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It next compares the results to the effectiveness of commercial activated carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call