Abstract

Future 5G cellular networks will need to deliver significantly increased system capacity and user data rates. This expected growth along with today's shortage of spectrum raises the need for new frequency allocations. Millimeter wave spectrum is emerging as a suitable candidate with a vast amount of available bandwidth (around 60 GHz). Extending cellular networks communications on millimeter wave frequencies requires extensive measurement campaigns and analysis of signals propagation characteristics. This paper gives an overview of recent measurement studies and results used for modeling millimeter wave channel behavior in different propagation environments. Also , the paper provides a preliminary simulation analysis of a hybrid LTE-millimeter wave heterogeneous network, which suggests that Gbps user data rates are achievable with sufficient beamforming gains. However, the millimeter wave cellular extensions will require architectural changes to address the technical issues spanning from the transceivers design to the operational procedures in both access and backhaul network parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.