Abstract

Microplastics (MPs) are an emerging pollutant whose ability to adsorb potentially toxic elements (PTEs) poses a serious threat to aquatic ecosystems, including rivers. In highly developed basins, the abundance of MPs in river sediment is expected to be high, elevating the sedimentary accumulation of PTEs. This hypothesis was tested in the Zayandeh-Rood River, Central Iran, with 21 sediment sampling stations distributed along the entire river stretch. Results of sediment analysis showed significant variations in the abundance and size of MPs, with concentrations ranked as Ba (270.71mg/kg) > Li (21.29mg/kg) > Cs (2.50mg/kg) > Be (1.44mg/kg) > Sn (1.17mg/kg) > Mo (1.06mg/kg) > Ag (0.76mg/kg), along with sediment physicochemical attributes such as EC, TOC, pH and grain size. MPs were identified in all sediment samples with a mean of 588 items/kg dry weight. Except for Ag, all other PTEs were classified as uncontaminated but exhibited increased enrichment downstream. According to the results of the generalized additive model (maximum R-sq of 0.766), the sedimentary concentration of the majority of PTEs is nonlinearly and positively associated with smaller and more abundant MPs. This study acknowledges that MPs might influence sediment porosity, permeability and structure, thereby directly affecting the settling dynamics of other particles, especially PTEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call