Abstract

Abstract An ensemble of general circulation model (GCM) integrations forced by observed sea surface temperature (SST) represents the climate response to SST forcing as well as internal variability or “noise.” Signal-to-noise analysis is used to identify the most reproducible GCM patterns of African summer precipitation related to the SST forcing. Two of these potentially predictable components are associated with the precipitation of the Guinea Coast and Sahel regions and correlate well with observations. The GCM predictable component associated with rainfall in the Sahel region reproduces observed temporal variability on both interannual and decadal time scales, though with reduced amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.