Abstract

This study begins to elucidate the cues and mechanisms by which the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), select host plants for feeding and oviposition. The electrophysiological response of the anal styli of male and female H. vitripennis to water vapor was examined using a modified electroantennography (EAG) device (stylogram). A strong electrophysiological response of the anal stylus to water vapor was found. Scanning electron microscopic examination of the anal stylus revealed the presence of long mechanosensory hairs, many small coeloconic-type sensilla, and masses of secretory granules termed brochosomes. Each coeloconic sensillum is located in a pit from which protrude finger-like projections. The pit is often blocked by masses of brochosomes and an unidentified dense material. Based on the electrophysiological response of the anal stylus to water vapor, we hypothesize that the coeloconic sensilla on the stylus may be hygroreceptors. H. vitripennis are xylem feeders and may use the sensilla to assist in host selection for the purpose of feeding or oviposition based on detected plant water status. Furthermore, H. vitripennis oviposit into the leaf epidermis, and may use these sensilla to evaluate moisture content to determine host suitability for both oviposition and subsequent feeding of emerged progeny. Understanding the cues and underlying mechanisms of host selection is an important consideration for predicting the movement of H. vitripennis between crops and disease epidemiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.