Abstract

The Knudsen-cell mass spectrometry was used to study evaporation and thermodynamics of pure liquid Sn, Fe-Sn and Fe-Cu-Sn molten alloys containing up to 20.3 mol% Sn or up to 5 mol% Cu and Sn in a wide temperature range. The thermodynamic properties of the binary melt were approximated by means of the subregular solution model with temperature dependent parameters. The properties of the ternary melt were represented with accuracy not worse than the experimental one by combination of the characteristics of the binary constituents. The obtained results were applied to assessment of the potentialities of simultaneous copper and tin removal from molten steel by means of evaporation. Combination of vacuum treatment of a 160-tons ladle with blowing through the molten metal neutral gases was considered as an example. Two processes are responsible for removal of copper and tin: transfer into gas bubbles, free-rising from the ladle bottom to its surface, and evaporation from molten metal surface, turbulized by blowing-through gas. It was shown that duration of the treatment necessary for a decrease in Cu concentration from 0.6 to 0.3 wt% amounts to ∼1.5 h and is not practically affected by variations in tin content in the range of 0.01 to 0.6wt%. During this time concentration of tin changes insignificantly at any initial content: from 0.6 to ∼0.51, from 0.1 to ∼0.086 or from 0.01 to ∼0.0086 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.