Abstract

Evolving economically affordable, scalable, and effective electrocatalysts for producing viable hydrogen energy through electrocatalytic water splitting are highly desirable due to depleting fossil fuels and growing ecological and environmental concerns. Recently, layered SnS2 semiconductor nanomaterial has been recognized as a noteworthy electrocatalytic candidate due to its chemically stable, high effective surface area, low cost, and high stability. This review discussed how to boost hydrogen energy production using layered SnS2 nanostructure as catalysts through electrocatalytic water splitting, which essentially comprises morphological, doping, and nanocomposite/ heterostructural engineering. Further, various vital parameters for evaluating the electrocatalytic properties of layered SnS2 and reaction mechanisms are broadly discussed. Finally, we also discussed the summary and the future perspectives of evolving layered SnS2 nanostructure as a superior electrode nanomaterial for electrocatalytic hydrogen evolution reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call