Abstract
Groundwater is essential for living earth including ecosystem functioning and development of society worldwide. In recent times, demand and pressure on groundwater resources are progressively increasing over time. Thus, the assessment and management of groundwater resources particularly in semi-arid region are very much crucial. Therefore, the principal objective of the present study is to categorize the groundwater potential areas using advanced machine learning (ML) approaches. In this study, random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) algorithms have been applied. The accuracy of each model has been estimated using the receiver operating characteristics (ROC) curve. About 60.63%, 65.39%, and 53.75% of areas come under moderate to very low groundwater potential. XGBoost indicates the highest predictive capacity (AUC 0.97). The innovation of this study lies in the combination of hydrological, topographical and geological datasets into machine learning platform. This research will support water resource management worldwide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.