Abstract
A novel collision avoidance algorithm is proposed to solve the path-planning problem of a high DOF robot manipulators in 3-D workspace. The algorithm is based on a generalized potential field model of 3-D workspace. The approach computes, similar to that done in electrostatics, repulsive force and torque between manipulator and obstacles using the workspace information directly. Using these force and torque, a collision-free path of a manipulator can be obtained by locally adjusting the manipulator configuration for minimum potential. The proposed approach is efficient since these potential gradients are analytically tractable. Simulation results show that the proposed algorithm works well, in terms of computation time and collision avoidance, for manipulators up to 6 links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.