Abstract

We consider the following nonlinear Schr\"{o}dinger equation of derivative type: \begin{equation}i \partial_t u + \partial_x^2 u +i |u|^{2} \partial_x u +b|u|^4u=0 , \quad (t,x) \in \mathbb{R}\times\mathbb{R}, \ b \in\mathbb{R}. \end{equation} If $b=0$, this equation is known as a gauge equivalent form of well-known derivative nonlinear Schr\"{o}dinger equation (DNLS), which is mass critical and completely integrable. The equation can be considered as a generalized equation of DNLS while preserving mass criticality and Hamiltonian structure. For DNLS it is known that if the initial data $u_0\in H^1(\mathbb{R})$ satisfies the mass condition $\| u_0\|_{L^2}^2 <4\pi$, the corresponding solution is global and bounded. In this paper we first establish the mass condition on the equation for general $b\in\mathbb{R}$, which is exactly corresponding to $4\pi$-mass condition for DNLS, and then characterize it from the viewpoint of potential well theory. We see that the mass threshold value gives the turning point in the structure of potential wells generated by solitons. In particular, our results for DNLS give a characterization of both $4\pi$-mass condition and algebraic solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.