Abstract

A numerical model of a cooling tower plume is employed to study the possible atmospheric effects of thermal plumes from natural draft dry cooling towers. Calculations are performed for both single and multiple towers, each of which can dissipate the waste heat from a nominal 1000 MWe power generating unit, and the results are compared with those for wet cooling towers associated with plants of the same generating capacity. Dry cooling tower plumes are found to have a higher potential for inducing convective clouds than wet cooling tower plumes, under most summertime meteorological conditions. This is due to the fact that both the sensible heat and momentum fluxes from a dry tower in summer are approximately one order of magnitude larger than those from a wet cooling tower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call