Abstract

BackgroundThe application of hydraulic fracturing during exploration and exploitation of unconventional natural gas reservoirs is currently under intense public discussion. On behalf of the German Federal Environment Agency we have investigated the potential water-related environmental risks for human health and the environment that could be caused by employing hydraulic fracturing in unconventional gas reservoirs in Germany. Here we provide an overview of the present situation and the state of the debate in Germany and summarize main results of the conducted risk assessment.ResultsWe propose a concept for a risk assessment considering the site-specific analysis of the geosystem, the relevance of possible impact pathways and the hazard potential of the fracking fluids employed. The foundation of a sound risk analysis is a description of the current system, the relevant impact pathways and their interactions. An evaluation of fracking fluids used in Germany shows that several additives were employed even in newer fluids that exhibit critical properties or for which an assessment of their behaviour and effects in the environment is not possible or limited due to lack of current knowledge. The authors propose an assessment method that allows for the estimation of the hazard potential of specific fracking fluids, formation water, and the flowback based on legal thresholds and guidance values as well as on human- and eco-toxicologically predicted no-effect concentrations. The assessment of a previously employed and a prospectively planed fracking fluids shows that these fluids exhibit a high hazard potential. The flowback containing fracking fluid, formation water, and possibly reaction products can also exhibit serious hazard potentials, requiring environmentally acceptable techniques for its treatment and disposal.ConclusionsThe risk analysis must be conducted always site-specifically and consider regional groundwater flow conditions. The study concludes that currently missing knowledge and data prevent a profound assessment of the risks and their technical controllability in Germany. Missing knowledge and information includes data on the properties of the deep geosystem and of the behaviour and effects of the deployed chemical additives. In this setting the authors propose several recommendations for further action and procedures regarding the application of hydraulic fracturing in unconventional gas reservoirs in Germany.

Highlights

  • The application of hydraulic fracturing during exploration and exploitation of unconventional natural gas reservoirs is currently under intense public discussion

  • On behalf of the German Federal Environment Agency (UBA), a consortium of IWW Water Centre, ahu AG, [Gaßner, Groth, Siederer & Coll.], and Technical University of Darmstadt, has conducted a comprehensive investigation on potential environmental impacts of hydraulic fracturing related to exploration and exploitation of unconventional natural gas reservoirs, which focused on the framework of a risk assessment, the analysis of potential impact pathways, a method for assessing the hazard potentials of the fracking fluids employed, and on legal regulations and administrative structures [4]

  • For assessing the risks that the application of hydraulic fracturing in unconventional natural gas reservoirs can pose on the water environment, we propose a concept that considers both the possible impact pathways and the potential hazard, any migration of the substances employed or encountered along these impact pathways could cause on exploitable water resources (Figure 2)

Read more

Summary

Introduction

The application of hydraulic fracturing during exploration and exploitation of unconventional natural gas reservoirs is currently under intense public discussion. The application of hydraulic fracturing (“fracking”) in the exploration and exploitation of unconventional natural gas reservoirs has been generating intensive public debates in a variety of countries. An overview of potential geological host formations of unconventional gas reservoirs in Germany is given, differentiating coalbed methane (CBM), shale gas and tight gas reservoirs. According to current estimates [1], the technologically recoverable gas reserves present in shale gas reservoirs in Germany amount to about 1,300 billion m3 (estimates range from 0.7 to 2.3 ∙ 1012 m3), assuming that 10% of the gas in place (GIP) is technologically recoverable. Conventional gas and tight gas reservoirs have been exploited in Germany over several decades, but current estimates of GIP remaining (100 billion m3 and 20 billion m3, respectively [3]) indicate that the remaining reserves are limited

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call