Abstract

Cowdria ruminantium is the etiologic agent of heartwater, a disease causing major economic loss in ruminants in sub-Saharan Africa and the Caribbean. Development of a serodiagnostic test is essential for determining the carrier status of animals from regions where heartwater is endemic, but most available tests give false-positive reactions with sera against related Erhlichia species. Current approaches rely on molecular methods to define proteins and epitopes that may allow specific diagnosis. Two major antigenic proteins (MAPs), MAP1 and MAP2, have been examined for their use as antigens in the serodiagnosis of heartwater. The objectives of this study were (i) to determine if MAP2 is conserved among five geographically divergent strains of C. ruminantium and (ii) to determine if MAP2 homologs are present in Ehrlichia canis, the causative agent of canine ehrlichiosis, and Ehrlichia chaffeensis, the organism responsible for human monocytic ehrlichiosis. These two agents are closely related to C. ruminantium. The map2 gene from four strains of C. ruminantium was cloned, sequenced, and compared with the previously reported map2 gene from the Crystal Springs strain. Only 10 nucleic acid differences between the strains were identified, and they translate to only 3 amino acid changes, indicating that MAP2 is highly conserved. Genes encoding MAP2 homologs from E. canis and E. chaffeensis also were cloned and sequenced. Amino acid analysis of MAP2 homologs of E. chaffeensis and E. canis with MAP2 of C. ruminantium revealed 83.4 and 84.4% identities, respectively. Further analysis of MAP2 and its homologs revealed that the whole protein lacks specificity for heartwater diagnosis. The development of epitope-specific assays using this sequence information may produce diagnostic tests suitable for C. ruminantium and also other related rickettsiae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call