Abstract

Recycling of waste paper was investigated with the aim of boosting the use of recycled materials and reducing the impact of waste paper on environment. Commercially important cyanoethyl cellulose product from waste paper was synthesized successfully through a cycle of chemical treatments. Waste paper was functionalized to cyanoethyl cellulose in an alkaline heterogeneous reaction environment with acrylonitrile under different reaction conditions with respect to degree of substitution. The variables studied were: Sodium Hydroxide and acrylonitrile concentration, reaction time and temperature for alkalization and cyanoethylation. All the cyanoethyl cellulose products were assessed for solubility, degree of polymerization and degree of crystallinity. The optimum conditions for cyanoethyl cellulose synthesis comprised of 8.34 M/anhydro glucose unit aqueous sodium hydroxide concentration, 30 °C alkalization temperature, 60 min alkalization time, 70 M/anhydro glucose unit acrylonitrile concentration, 60 min reaction time for cyanoethylation and 50 °C cyanoethylation reaction temperature. The optimized cyanoethyl cellulose product was characterized with fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy, X-ray diffraction and scanning electron microscopy. This investigation helped to find the proper cleaner production approach towards sustainable environment management by synthesizing valuable cyanoethyl cellulose product and demonstrated that waste paper have the capacity to produce upgraded and high quality cyanoethyl cellulose for variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.