Abstract

Bisphenol A (BPA) is one of the most common toxic endocrine disruptors in the environment. A fast, efficient and environmental-friendly method for BPA detoxification is urgently needed. In this study, we show that the enzymatic transformation of BPA into a non-estrogenic BPA sulfate can be performed by the aryl sulfotransferase (ASTB) from Desulfitobacterium hafniense. We developed and compared two Escherichia coli ASTB cell-surface displaying systems using the outer membrane porin F (OprF) and the lipoprotein outer membrane A (Lpp-OmpA) as carriers. The surface localization of both fusion proteins was confirmed by Western blot and flow cytometry analysis as well as the enzymatic activity assay of the outer membrane fractions. Unfortunately, Lpp-OmpA-ASTB cells had an adverse effect on cell growth. In contrast, the OprF-ASTB cell biocatalyst was stable, expressing 70% of enzyme activity for 7 days. It also efficiently sulfated 90% of 5 mM BPA (1 mg/mL) in wastewater within 6 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call