Abstract

Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO2 on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations.

Highlights

  • OFScnighReumurBeeP1for generation of D-ribulose-1,5-bisphosphate (RuBP) from 3-phosphoglycerate (3PGA) obtained from fixation of CO2 Scheme for generation of D-ribulose-1,5-bisphosphate (RuBP) from 3-phosphoglycerate (3PGA) obtained from fixation of CO2 on RuBP

  • The methods in environmental biotechnology that enables efficient capture [15] and fixation of CO2 at emission source/site into concatenated carbon compounds has been pioneered by our group [16-19]

  • The first part in the biocatalytic carbon dioxide fixation is the capture of gaseous CO2

Read more

Summary

Conclusion

The enzyme-mutants lacking catalytic activity represent an important group of proteins that could be used for development of sugar-binding proteins reversible with respect to physicochemical parameters such as pH or salt concentration. The non-enzymatic proteins represent a suitable repertoire of such potential scaffolds, which could be used for development as sugar-binding proteins to be used in reactors for simultaneous separation of sugars that would be used in subsequent conversion steps. We have developed a RuBP production scheme from 3PGA [16,17] and a de novo RuBP production scheme from D-glucose [21] for continuous CO2 fixation and for start-up of the fixation respectively employing series of reactors. Both systems for production of RuBP will benefit from specific sugar binders but besides their use in environmental biotechnology, they will find application in diagnostics, separation technologies and as research reagents

Schnur R
23. Hart DA
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.