Abstract
This study hypothesizes that reduced-scale models for computational fluid dynamics (CFD) simulations of wind flow and related processes can save numerical resources. To test this hypothesis, both theoretical analysis and a numerical case study are conducted. The CFD simulations are validated against a set of wind tunnel experimental data. Both theoretical and numerical results support the hypothesis. It is found that a reduced-scale model requires fewer cells than a full-scale model to achieve a target near-wall z+ value and prediction accuracy and therefore has the potential to save numerical resources. Quantitative analysis shows that this potential is very large, depending on many factors, such as the scaling factor, the target z+ value, and the flow problem. The findings of this study should be useful for CFD simulations of wind flow and related processes, particularly over large areas. However, special attention should be paid to the disadvantages of using reduced-scale models, such as the difficulty to fulfill the similarity requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.