Abstract

The recycle poly(ethylene terephthalate) (rPET) used as an alternative reinforcing material for in situ microfibrillar-reinforced composite, compared with liquid crystalline polymer (LCP), was investigated. The PE-LCP and PE-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer (styrene-ethylene butylene-styrene-grafted maleic anhydride, SEBS-g-MA) loading on morphology, tensile properties, thermal stability and dynamic mechanical characteristics of the LCP- and rPET-composite systems were studied. In as-spun samples containing compatibilizer, the fibrillation of LCP domains was observed whereas rPET domains appeared as droplets. After drawing, good fibrillation of LCP and rPET domains is remarkably observed especially in the composite fibers with compatibilizer loading. The mechanical properties of the composite fibers were strongly depended on the fibrillation of the dispersed phases which directly related the levels of draw ratio and compatibilizer loading. The mechanical properties enhanced by SEBS-g-MA were more pronounced in the rPET than LCP systems. The presence of rPET in the composite fibers alone or with the compatibilizer clearly improved the thermal resistance of PE whereas no significant change in thermal stability for the LCP-containing composite fibers with and without compatibilizer loading. The results from dynamic mechanical analysis revealed that an improvement in dynamic mechanical properties of the composite fibers could be achieved by drawing with optimum draw ratio together with optimum compatibilizer dosage. All obtained results suggested the high potential of rPET minor blend-component as a good reinforcing and thermal resistant materials for the thermoplastic composite fiber, in replacing the more expensive LCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.