Abstract

AbstractThe objective of this study is to investigate the effects of a new type of infill—called locked brick infill adopting horizontal sliding joints—in reducing the soft-story formation in reinforced concrete (RC) frames with code-conforming seismic detailing. Nonlinear static time-history analyses were performed on multistory planar frames with only the upper stories infilled in order to force the soft-story irregularity. The parameters of frame and infill elements that were used in numerical simulations were obtained from half-scale RC infilled frame tests that had been performed by the author covering single story–single bay frames infilled with standard and locked bricks. The numerical simulations showed that the use of locked bricks to form infill walls has the potential to decrease the soft-story/weak-story formation in comparison to standard bricks due to its shear sliding mechanism and decreased upper-story/first-story stiffness, even in buildings that have noninfilled first stories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.