Abstract

Tuberculosis is among the infectious diseases with the highest mortality and morbidity worldwide, behind the COVID-19 pandemic. It can affect any organ, although the respiratory infection is the most common. The correct activation of the immune response eliminates or contain the bacteria; however, the active disease is progressive and must be treated under strict supervision. Treatment for tuberculosis is prolonged and consists of a combination of several antibiotics associated with a wide variety of adverse effects. These effects are the main cause of therapeutic abandonment, which facilitates the appearance of drug-resistant strains. Hence the importance of developing new therapeutic strategies to reduce the dose of the drug or its administration time. To achieve these objectives, the use of nano-vehicles, which are controlled and directed drug release systems, has been proposed. Specifically, liposomes are formulations that have advantages when administered by the respiratory route since they facilitate the reach of the respiratory mucosa and the lungs, which are the main organs affected by tuberculosis. This review analyzes the use of nano-vehicles as effective drug delivery systems and the formulations under study. Perspectives for the application of nanotechnology in the development of new pharmacological treatments for tuberculosis are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.