Abstract

The structure of a previously calculated transition state (TS) was used to design the [tetrahydro-2-(methylthio)furan-2-yl]methyl phosphate dianion ( 1) as a new scaffold for transition-state analogs of reactions catalyzed by the inverting glycosyltransferases. This scaffold contains relevant features of the donor and acceptor and represents a new type of potential inhibitors for these enzymes. Available conformational space of 1 was explored using DFT quantum chemical methods by means of two-dimensional potential-energy maps calculated as a function of Φ, Ψ, and ω dihedral angles at the B3LYP/6-31+G* level. The calculated potential energy surfaces revealed the existence of several low-energy domains. Structures from these regions were refined at the 6-311++G** level and led to 14 conformers. The stability of conformers is influenced by their environment, and in aqueous solution two conformers dominate the equilibrium. A superposition of calculated conformers with the predicted TS structure revealed that the preferred conformers in solution nicely mimic structural features of the TS. These results imply that 1 has structural properties required to mimic the TS and therefore can be used as a scaffold for further development of TS-analog inhibitors for retaining glycosyltransferases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.