Abstract

Landfill leachate has become a major public health concern due to its adverse health effects. However, its toxicological effects have not been thoroughly determined because of its complex composition. To address this issue, two model organisms were used in this study, including mung beans and zebrafish. Bean seedlings were exposed to different concentrations of landfill leachate (1%, 5%, 10%, 15%, and 20%, v/v, leachate/deionized water) for 7days. Low concentrations (1%) of landfill leachate increased the growth of mung beans, whereas high concentrations (15% and 20%) of landfill leachate inhibited the growth and development of seedlings. Furthermore, landfill leachate reduced chlorophyll levels but increased malondialdehyde levels, leading to an increased rate of root-tip micronuclei. Zebrafish embryos were exposed to different concentrations of landfill leachate (0.5%, 1.0%, 1.2%, and 1.5%, v/v, leachate/E3 medium) for 120h. The results showed that landfill leachate significantly decreased lower levels of hatching rate and heart rate but increased the mortality and malformation rates of embryos. Moreover, 1.0% landfill leachate reduced the frequency of spontaneous movement and the light stimulation reaction of embryos. Embryos exposed to leachate showed less exploratory behavior and fewer mirror attacks in the black and white areas. Our results suggest that exposure to landfill leachate could cause developmental toxicity and genotoxicity in plants and fish. The findings can improve our understanding of the environmental toxicity of landfill leachate and provide additional evidence for its risk assessment and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call