Abstract

Bisphenol A (BPA) is an endocrine disruptor widely existing in plastics and resins, which can accumulate in animals and human bodies, posing a potential threat to the physiological and biochemical reactions of human beings or other organisms. α-Chymotrypsin is a kind of proteolytic enzyme existing in humans and animals, which can cause diseases when its activity is excessive. However, there is a lack of research on the mechanism of endocrine disruptors affecting α-chymotrypsin activity. In this study, the interaction between BPA and α-chymotrypsin was proved via multiple spectroscopic approaches, enzyme activity change, isothermal titration calorimetry and molecular docking. Results showed that α-chymotrypsin’s polypeptide chains were unfolded, and protein skeletons were loosened with the exposure to BPA. α-Helix content increased and β-sheet content was decreased. The particle size of the BPA-α-chymotrypsin complex became smaller. Fluorescence sensitization may also be explained by a perturbation of the chromophore Trp 141. The thermodynamic parameters of the binding reaction were measured by isothermal titration calorimetry (ITC), which showed that there was hydrophobic interaction between BPA and α-chymotrypsin, which was consistent with the results of molecular docking. Moreover, BPA may stop near the active center of α-chymotrypsin and interact with the key residues His 57 and Ser 195. The above phenomenon explained the result that the activity of α-chymotrypsin increased to 139% when exposed to high dose BPA (40 μM). Taken together, the effects of BPA on the structure and function of α-chymotrypsin were clarified at the molecular level, which made up the gap in the mechanism of BPA on the proteolytic enzyme, and provided a reliable basis for disease avoidance and prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.