Abstract

Let $W^D$ be a killed Brownian motion in a domain $D\subset {\mathbb R}^d$ and $S$ an independent subordinator with Laplace exponent $\phi$. The process $Y^D$ defined by $Y^D_t=W^D_{S_t}$ is called a subordinate killed Brownian motion. It is a Hunt process with infinitesimal generator $-\phi(-\Delta|_D)$, where $\Delta|_D$ is the Dirichlet Laplacian. In this paper we study the potential theory of $Y^D$ under a weak scaling condition on the derivative of $\phi$. We first show that non-negative harmonic functions of $Y^D$ satisfy the scale invariant Harnack inequality. Subsequently we prove two types of scale invariant boundary Harnack principles with explicit decay rates for non-negative harmonic functions of $Y^D$. The first boundary Harnack principle deals with a $C^{1,1}$ domain $D$ and non-negative functions which are harmonic near the boundary of $D$, while the second one is for a more general domain $D$ and non-negative functions which are harmonic near the boundary of an interior open subset of $D$. The obtained decay rates are not the same, reflecting different boundary and interior behaviors of $Y^D$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.