Abstract

The dependences of the frequency and damping rate of a potential surface wave on the wavenumber and the degree of anisotropy of a bi-Maxwellian electron distribution characterized by different temperatures along and across the plasma surface are established. It is demonstrated that the influence of electron thermal motion along the plasma surface on the surface wave properties is similar to the influence of thermal motion on the properties of a bulk Langmuir wave. On the contrary, thermal motion across the surface qualitatively affects the dispersion relation and substantially increases the damping rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.