Abstract

BackgroundForests play an important role in the global carbon flow. They can store carbon and can also provide wood which can substitute other materials. In EU27 the standing biomass is steadily increasing. Increments and harvests seem to have reached a plateau between 2005 and 2010. One reason for reaching this plateau will be the circumstance that the forests are getting older. High ages have the advantage that they typical show high carbon concentration and the disadvantage that the increment rates are decreasing. It should be investigated how biomass stock, harvests and increments will develop under different climate scenarios and two management scenarios where one is forcing to store high biomass amounts in forests and the other tries to have high increment rates and much harvested wood.ResultsA management which is maximising standing biomass will raise the stem wood carbon stocks from 30 tC/ha to 50 tC/ha until 2100. A management which is maximising increments will lower the stock to 20 tC/ha until 2100. The estimates for the climate scenarios A1b, B1 and E1 are different but there is much more effect by the management target than by the climate scenario. By maximising increments the harvests are 0.4 tC/ha/year higher than in the management which maximises the standing biomass. The increments until 2040 are close together but around 2100 the increments when maximising standing biomass are approximately 50 % lower than those when maximising increments. Cold regions will benefit from the climate changes in the climate scenarios by showing higher increments.ConclusionsThe results of this study suggest that forest management should maximise increments, not stocks to be more efficient in sense of climate change mitigation. This is true especially for regions which have already high carbon stocks in forests, what is the case in many regions in Europe. During the time span 2010–2100 the forests of EU27 will absorb additional 1750 million tC if they are managed to maximise increments compared if they are managed to maximise standing biomass. Incentives which will increase the standing biomass beyond the increment optimal biomass should therefore be avoided. Mechanisms which will maximise increments and sustainable harvests need to be developed to have substantial amounts of wood which can be used as substitution of non sustainable materials.

Highlights

  • Forests play an important role in the global carbon flow

  • The rotation times in forest management systems maximising the standing biomass are much longer than those maximising increments. [2] showed that an increasing growth trend can be observed in most cases, apart from some specific sites in Europe. [3] give net annual increment for EU27 with 550.6 mill.m3 (1990), 597.8 mill.m3 (2000), 619.5 mill.m3 (2005) and 608.9 mill.m3 (2010)

  • Different climate and management scenarios show a typical development of the standing biomass over time

Read more

Summary

Introduction

Forests play an important role in the global carbon flow. They can store carbon and can provide wood which can substitute other materials. It looks like that the annual increments have reached a peak around the year 2005 especially if it is taken into account that the forest area is increasing from 146.1 mill.ha (1990), 152.8 mill.ha (2000), 154.7 mill.ha (2005) to 157.2 mill.ha (2010) This increment trend reversal can be caused by many reasons. Young forests show low increments per hectare and year which are increasing with age until a certain age where the increment is culminating and a further increasing age shows a decreasing increment This pattern is e.g. site, species and stand density depending. The gap between increments and harvests cause an increasing average age and biomass and at certain point a decreasing wood increment.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call