Abstract

A probabilistic model called the potential source contribution function (PSCF) has been used to estimate atmospheric source regions of polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides, and polychlorinated biphenyls (PCBs) to the Great Lakes. This model allows us to map each compound's source region on a 0.5 degrees x 0.5 degrees latitude/longitude grid centered over the Great Lakes basin. PCBs primarily have urban sources, the strengths of which vary. Like PCBs, PAHs show a strong urban signature, but these compounds also seem to come from rural sites. The source regions of PAH become less distinct as the molecular weight of the compound increases. Since reactivity increases with PAH size, this diminishing trend may be an indication that atmospheric degradation plays a large role in PAH transport. The pesticides have the strongest source regions and are typically transported the farthest, often from areas distant from the Great Lakes basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.