Abstract

The diversity of cropping systems and its variation could lead to great uncertainty in the estimation of soil organic carbon (SOC) stock across time and space. Using the pre-validated Agricultural Production Systems Simulator, we simulated the long-term (1022 years) SOC dynamics in the top 0.3 m of soil at 613 reference sites under 59 representative cropping systems across Australia’s cereal-growing regions. The point simulation results were upscaled to the entire cereal-growing region using a Monte Carlo approach to quantify the spatial pattern of SOC stock and its uncertainty caused by cropping system and environment. The predicted potential SOC stocks at equilibrium state ranged from 10 to 140 t ha–1, with the majority in a range 30–70 t ha–1, averaged across all the representative cropping systems. Cropping system accounted for ~10% of the total variance in predicted SOC stocks. The type of cropping system that determined the carbon input into soil had significant effects on SOC sequestration potential. On average, the potential SOC stock in the top 0.3 m of soil was 30, 50 and 60 t ha–1 under low-, medium- and high-input cropping systems in terms of carbon input, corresponding to –2, 18 and 26 t ha–1 of SOC change. Across the entire region, the Monte Carlo simulations showed that the potential SOC stock was 51 t ha–1, with a 95% confidence interval ranging from 38 to 64 t ha–1 under the identified representative cropping systems. Overall, predicted SOC stock could increase by 0.99 Pg in Australian cropland under the identified representative cropping systems with optimal management. Uncertainty varied depending on cropping system, climate and soil conditions. Detailed information on cropping system and soil and climate characteristics is needed to obtain reliable estimates of potential SOC stock at regional scale, particularly in cooler and/or wetter regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call